Extensions 1→N→G→Q→1 with N=C6xC18 and Q=C22

Direct product G=NxQ with N=C6xC18 and Q=C22
dρLabelID
C22xC6xC18432C2^2xC6xC18432,562

Semidirect products G=N:Q with N=C6xC18 and Q=C22
extensionφ:Q→Aut NdρLabelID
(C6xC18):1C22 = S3xD4xC9φ: C22/C1C22 ⊆ Aut C6xC18724(C6xC18):1C2^2432,358
(C6xC18):2C22 = S3xC9:D4φ: C22/C1C22 ⊆ Aut C6xC18724(C6xC18):2C2^2432,313
(C6xC18):3C22 = D9xC3:D4φ: C22/C1C22 ⊆ Aut C6xC18724(C6xC18):3C2^2432,314
(C6xC18):4C22 = D18:D6φ: C22/C1C22 ⊆ Aut C6xC18364+(C6xC18):4C2^2432,315
(C6xC18):5C22 = C3xD4xD9φ: C22/C1C22 ⊆ Aut C6xC18724(C6xC18):5C2^2432,356
(C6xC18):6C22 = D4xC9:S3φ: C22/C1C22 ⊆ Aut C6xC18108(C6xC18):6C2^2432,388
(C6xC18):7C22 = C22xS3xD9φ: C22/C1C22 ⊆ Aut C6xC1872(C6xC18):7C2^2432,544
(C6xC18):8C22 = C18xC3:D4φ: C22/C2C2 ⊆ Aut C6xC1872(C6xC18):8C2^2432,375
(C6xC18):9C22 = D4xC3xC18φ: C22/C2C2 ⊆ Aut C6xC18216(C6xC18):9C2^2432,403
(C6xC18):10C22 = S3xC22xC18φ: C22/C2C2 ⊆ Aut C6xC18144(C6xC18):10C2^2432,557
(C6xC18):11C22 = C6xC9:D4φ: C22/C2C2 ⊆ Aut C6xC1872(C6xC18):11C2^2432,374
(C6xC18):12C22 = C2xC6.D18φ: C22/C2C2 ⊆ Aut C6xC18216(C6xC18):12C2^2432,397
(C6xC18):13C22 = D9xC22xC6φ: C22/C2C2 ⊆ Aut C6xC18144(C6xC18):13C2^2432,556
(C6xC18):14C22 = C23xC9:S3φ: C22/C2C2 ⊆ Aut C6xC18216(C6xC18):14C2^2432,560

Non-split extensions G=N.Q with N=C6xC18 and Q=C22
extensionφ:Q→Aut NdρLabelID
(C6xC18).1C22 = C9xD4:2S3φ: C22/C1C22 ⊆ Aut C6xC18724(C6xC18).1C2^2432,359
(C6xC18).2C22 = Dic3xDic9φ: C22/C1C22 ⊆ Aut C6xC18144(C6xC18).2C2^2432,87
(C6xC18).3C22 = Dic9:Dic3φ: C22/C1C22 ⊆ Aut C6xC18144(C6xC18).3C2^2432,88
(C6xC18).4C22 = C18.Dic6φ: C22/C1C22 ⊆ Aut C6xC18144(C6xC18).4C2^2432,89
(C6xC18).5C22 = Dic3:Dic9φ: C22/C1C22 ⊆ Aut C6xC18144(C6xC18).5C2^2432,90
(C6xC18).6C22 = D18:Dic3φ: C22/C1C22 ⊆ Aut C6xC18144(C6xC18).6C2^2432,91
(C6xC18).7C22 = C6.18D36φ: C22/C1C22 ⊆ Aut C6xC1872(C6xC18).7C2^2432,92
(C6xC18).8C22 = D6:Dic9φ: C22/C1C22 ⊆ Aut C6xC18144(C6xC18).8C2^2432,93
(C6xC18).9C22 = C2xC9:Dic6φ: C22/C1C22 ⊆ Aut C6xC18144(C6xC18).9C2^2432,303
(C6xC18).10C22 = C2xDic3xD9φ: C22/C1C22 ⊆ Aut C6xC18144(C6xC18).10C2^2432,304
(C6xC18).11C22 = D18.3D6φ: C22/C1C22 ⊆ Aut C6xC18724(C6xC18).11C2^2432,305
(C6xC18).12C22 = C2xC18.D6φ: C22/C1C22 ⊆ Aut C6xC1872(C6xC18).12C2^2432,306
(C6xC18).13C22 = C2xC3:D36φ: C22/C1C22 ⊆ Aut C6xC1872(C6xC18).13C2^2432,307
(C6xC18).14C22 = C2xS3xDic9φ: C22/C1C22 ⊆ Aut C6xC18144(C6xC18).14C2^2432,308
(C6xC18).15C22 = Dic3.D18φ: C22/C1C22 ⊆ Aut C6xC18724(C6xC18).15C2^2432,309
(C6xC18).16C22 = D18.4D6φ: C22/C1C22 ⊆ Aut C6xC18724-(C6xC18).16C2^2432,310
(C6xC18).17C22 = C2xD6:D9φ: C22/C1C22 ⊆ Aut C6xC18144(C6xC18).17C2^2432,311
(C6xC18).18C22 = C2xC9:D12φ: C22/C1C22 ⊆ Aut C6xC1872(C6xC18).18C2^2432,312
(C6xC18).19C22 = C3xD4:2D9φ: C22/C1C22 ⊆ Aut C6xC18724(C6xC18).19C2^2432,357
(C6xC18).20C22 = C36.27D6φ: C22/C1C22 ⊆ Aut C6xC18216(C6xC18).20C2^2432,389
(C6xC18).21C22 = Dic3xC36φ: C22/C2C2 ⊆ Aut C6xC18144(C6xC18).21C2^2432,131
(C6xC18).22C22 = C9xDic3:C4φ: C22/C2C2 ⊆ Aut C6xC18144(C6xC18).22C2^2432,132
(C6xC18).23C22 = C9xC4:Dic3φ: C22/C2C2 ⊆ Aut C6xC18144(C6xC18).23C2^2432,133
(C6xC18).24C22 = C9xD6:C4φ: C22/C2C2 ⊆ Aut C6xC18144(C6xC18).24C2^2432,135
(C6xC18).25C22 = C9xC6.D4φ: C22/C2C2 ⊆ Aut C6xC1872(C6xC18).25C2^2432,165
(C6xC18).26C22 = C18xDic6φ: C22/C2C2 ⊆ Aut C6xC18144(C6xC18).26C2^2432,341
(C6xC18).27C22 = S3xC2xC36φ: C22/C2C2 ⊆ Aut C6xC18144(C6xC18).27C2^2432,345
(C6xC18).28C22 = C18xD12φ: C22/C2C2 ⊆ Aut C6xC18144(C6xC18).28C2^2432,346
(C6xC18).29C22 = C9xC4oD12φ: C22/C2C2 ⊆ Aut C6xC18722(C6xC18).29C2^2432,347
(C6xC18).30C22 = Dic3xC2xC18φ: C22/C2C2 ⊆ Aut C6xC18144(C6xC18).30C2^2432,373
(C6xC18).31C22 = C4oD4xC3xC9φ: C22/C2C2 ⊆ Aut C6xC18216(C6xC18).31C2^2432,409
(C6xC18).32C22 = C12xDic9φ: C22/C2C2 ⊆ Aut C6xC18144(C6xC18).32C2^2432,128
(C6xC18).33C22 = C3xDic9:C4φ: C22/C2C2 ⊆ Aut C6xC18144(C6xC18).33C2^2432,129
(C6xC18).34C22 = C3xC4:Dic9φ: C22/C2C2 ⊆ Aut C6xC18144(C6xC18).34C2^2432,130
(C6xC18).35C22 = C3xD18:C4φ: C22/C2C2 ⊆ Aut C6xC18144(C6xC18).35C2^2432,134
(C6xC18).36C22 = C3xC18.D4φ: C22/C2C2 ⊆ Aut C6xC1872(C6xC18).36C2^2432,164
(C6xC18).37C22 = C4xC9:Dic3φ: C22/C2C2 ⊆ Aut C6xC18432(C6xC18).37C2^2432,180
(C6xC18).38C22 = C6.Dic18φ: C22/C2C2 ⊆ Aut C6xC18432(C6xC18).38C2^2432,181
(C6xC18).39C22 = C36:Dic3φ: C22/C2C2 ⊆ Aut C6xC18432(C6xC18).39C2^2432,182
(C6xC18).40C22 = C6.11D36φ: C22/C2C2 ⊆ Aut C6xC18216(C6xC18).40C2^2432,183
(C6xC18).41C22 = C62.127D6φ: C22/C2C2 ⊆ Aut C6xC18216(C6xC18).41C2^2432,198
(C6xC18).42C22 = C6xDic18φ: C22/C2C2 ⊆ Aut C6xC18144(C6xC18).42C2^2432,340
(C6xC18).43C22 = D9xC2xC12φ: C22/C2C2 ⊆ Aut C6xC18144(C6xC18).43C2^2432,342
(C6xC18).44C22 = C6xD36φ: C22/C2C2 ⊆ Aut C6xC18144(C6xC18).44C2^2432,343
(C6xC18).45C22 = C3xD36:5C2φ: C22/C2C2 ⊆ Aut C6xC18722(C6xC18).45C2^2432,344
(C6xC18).46C22 = C2xC6xDic9φ: C22/C2C2 ⊆ Aut C6xC18144(C6xC18).46C2^2432,372
(C6xC18).47C22 = C2xC12.D9φ: C22/C2C2 ⊆ Aut C6xC18432(C6xC18).47C2^2432,380
(C6xC18).48C22 = C2xC4xC9:S3φ: C22/C2C2 ⊆ Aut C6xC18216(C6xC18).48C2^2432,381
(C6xC18).49C22 = C2xC36:S3φ: C22/C2C2 ⊆ Aut C6xC18216(C6xC18).49C2^2432,382
(C6xC18).50C22 = C36.70D6φ: C22/C2C2 ⊆ Aut C6xC18216(C6xC18).50C2^2432,383
(C6xC18).51C22 = C22xC9:Dic3φ: C22/C2C2 ⊆ Aut C6xC18432(C6xC18).51C2^2432,396
(C6xC18).52C22 = C22:C4xC3xC9central extension (φ=1)216(C6xC18).52C2^2432,203
(C6xC18).53C22 = C4:C4xC3xC9central extension (φ=1)432(C6xC18).53C2^2432,206
(C6xC18).54C22 = Q8xC3xC18central extension (φ=1)432(C6xC18).54C2^2432,406

׿
x
:
Z
F
o
wr
Q
<